From the ground up: How to pick the parts for a custom road bike build

There comes a time in the life of every cyclist when they have enough experience to form strong opinions on the parts they use. At this point, they are ready to consider a custom bike where every part is handpicked to satisfy their needs and desires. It can be a daunting proposition, but all of the extra time and effort will be rewarded with an immensely satisfying bike. In this post, Australian tech editor Matt Wikstrom takes a look at what you need to know when selecting the parts for a road bike build. It will also serve as a handy crib sheet for any rider looking to replace any part of a road bike, be it a stem, wheels, or an entire groupset. The most convenient way to buy a new bike is to choose one of the many factory-built bikes on offer from dozens of brands. These off-the-rack packages offer great value and prospective buyers can take the bike for a test-ride before making a decision. However, the buyer doesn’t get any say in the choice of components or the colour of the frameset, though most bike shops are normally prepared to swap the saddle or fit a different-sized stem to ensure the buyer is happy with the fit and feel of the bike. At the other end of the spectrum,...

Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles

Encapsulation of therapeutic molecules within polymer particles is a well-established method for achieving controlled release, yet challenges such as low loading, poor encapsulation efficiency, and loss of protein activity limit clinical translation. Despite this, the paradigm for the use of polymer particles in drug delivery has remained essentially unchanged for several decades. By taking advantage of the adsorption of protein therapeutics to poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we demonstrate controlled release without encapsulation. In fact, we obtain identical, burst-free, extended-release profiles for three different protein therapeutics with and without encapsulation in PLGA nanoparticles embedded within a hydrogel. Using both positively and negatively charged proteins, we show that short-range electrostatic interactions between the proteins and the PLGA nanoparticles are the underlying mechanism for controlled release. Moreover, we demonstrate tunable release by modifying nanoparticle concentration, nanoparticle size, or environmental pH. These new insights obviate the need for encapsulation and offer promising, translatable strategies for a more effective...